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EXECUTIVE SUMMARY 

This 98 end of year report focuses on integrating the separately 

developed GPR-related software modules into a larger, common software 

framework in order to provide a single, easily accessible, and user-friendly 

GPR data processing and analysis environment. 

In particular, the Consecutive Layer Identification (CLI) approach as 

well as the Adaptive Transform (AT) have been re-coded and incorporated 

under a Windows 95/98-based Graphical User Interface (GUI). This report 

and the attached program description serve as a comprehensive account of 

our research towards streamlining all the software development under one 

common user interface. 

Besides the CLI and AT modules, the report also discusses on-going 

efforts of integrating the neural network modules currently under 

development. Our ultimate goal is the field evaluation of GPR time­

amplitude data either via AT/CLI or the neural network module under a 

single software platform. 
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1. Overview 

1.1 Introduction 

Ground Penetrating Radar (GPR) is an electromagnetic remote sensing technique which 

uses radio waves, typically in the 10 to 2500 MHz frequency range, to locate and map 

different features and structures below the ground surface (bgs). In general, a GPR 

system transmits a short electromagnetic pulse into the ground - the pulse is reflected, 

refracted or scattered by the targets that exhibit some difference in electrical properties 

(dielectric permittivity, conductivity, and magnetic permeability) and is then recorded by 

the receiving antennas. The greater is the difference in the dielectric permeability, the 

larger is the amplitude of the reflection pulse. 

High radar frequencies are needed to achieve a good spatial resolution, but penetration 

depth of the electric field is inversely proportional to the frequency. Hence the choice of 

frequency range is a trade-off between resolution and penetration depth. Penetration 

depth also depends on the nature of the soil, which has different attenuation properties. 

For example, desert sand has an attenuation of about 1 dB/m for a 1 GHz frequency, clay 

has an attenuation of 100 dB/mat the same frequency. 

The reflected wave is sampled and digitized by an AID converter to form a vector. 

Typically 512 or 1024 points are taken through the region of interest. The recorded signal 

in the time domain is called an A-scan and in many GPR applications the A-scans are 

recorded consecutively along some spatial direction usually called radar or transect line. 

Typical GPR system records 5 to 10 scans per meter and these GPR soundings are 

performed by dragging a GPR hardware package including transmitting and receiving 

antennas behind a vehicle. 

The goal of the GPR data processing system (simply called system below) is to process 

and understand the GPR data in an automatic way such that a minimum amount of human 

interference is required. 

The inputs to the system are field-collected experimental data (Radar or Transect 

Lines). They are the response of the underground structure to high frequency 

electromagnetic pulses. Those responses are sampled and quantified as discrete data 



points or Ascans. Each radar line contains several thousands of Ascans. And each Ascan 

may contain 512 or 1024 sample points with 8-bit or 16-bit resolution. The task of the 

software system is to evaluate those data and provide comprehensive information about 

the underground structure together with the parameters of interest. 

1.2 Data processing methods 

In our previous research two major methods had been studied. One of those was the 

Neural Network approach, the other was the Consecutive Layer Identification (CLI) 

approach. 

The NN approach passes the data through a pre-processing stage to extract the key 

features, then uses two different neural network algorithms to recover the subsurface 

configuration and parameters, respectively. The result is a combination of two pieces of 

information, one is an indication showing the stratified configuration according to a set of 

pre-defined patterns, and the other one is the corresponding layer depth profiles. These 

results and system development were reported in detail in our 1997 end of year report. 

By utilizing an analytical model that provides an explicit description of the interaction 

between the injected pulse and the material, the second approach (CLI) tries to identify 

the underlying system from the impulse response. Again, a pre-processing stage has to 

be carried out to determine the impulse response. 

It should be noted that the same pre-processing technique is used in both approaches, 

which is named the Adaptive Transform. It deconvolves the input signal with the output 

signal to determine the impulse response and then passes this response to either the 

Neural Networks or the CLI program. It plays a key role in the overall performance. 

2 



r---------
f-. Adaptive 

: Ascan 

r--------
: Shifts, 
: weights 
' 

' transform 

--
' ' 
~----? 
' ' - ' 

• 

r-------------, 
' A Priori ' 

~ ' ' ' ~ ' knowledge ' ' ' ' ------~------' 
-----------

Material 
Consecutive 

.. Layer " 
property, .. 

depth .. 
Identification 

profile 

-----------
Neural Networks .-----------

' I ' Pattern 
NNI I I ' number, 

" ' ' .. ' depth ' 
L ' profile NNII _..• 
J ' ·-----------

Neural Networks Training 

1\ NNI Jr 
T 

1 NNII ~ 

Compare, 
adjust 

' ' ' 
' I 
' 

-------------. 
Target 
profile 

' 

-------------· 

Figure 1. GPR Data Processing System. 

1.3 System functionality 

This GPR Delineation System is developed under Microsoft Visual C++ 5.0. It uses 

Microsoft Foundation Class (MFC) to provide a user interface that is similar to most 

Windows 95 applications. 

The major components of the system include an Adaptive Transform unit, a Neural 

Network processing unit, a CLI unit and a Neural Network training unit. See Figure 1 for 

the relations among those units. 

Users select a radar line to be processed, then choose an input pulse that matches most 

closely the input pulse when the data were collected. Users have the option to choose the 

entire line or just a portion of it for processing. The actual processing can be done by 
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either the Neural Network or the CLI approach. It is also possible to determine whether 

the Ascans will be processed after averaging, sampling, or individually. Moreover, the 

users can train the Neural Network with user-defined profiles. 

In the last version of this system, the result of the CLI approach is real time displayed on 

the screen. And the result of the Neural Network approach is stored in a file. 

2. System Details 

2.1 User interface 

The interface is coded with MFC to provide a familiar and friendly user environment. A 

variety of dialog boxes are provided, including the standard file operation dialog boxes, 

dialog boxes for options and dialog boxes for specifying parameters. More details are 

given below. 

File operations: users can invoke the 'FileJOpen' dialog box to open a radar line (data 

file), the parameters are shown and can be changed if necessary. In the future the 

software will be modified in order to save the results from different approaches into 

different files, and allow the printing of the results. 

Options: Here the operator can use this dialog box to specify an Input Pulse to be used by 

the Adaptive Transform. One can configure a broad range of parameters, including 

frequency, amplitude, phase and even the pulse type. Apart from these choices, one can 

also construct their own Input Pulse, i.e., from experimental data, and import it as a file. 

Since using the appropriate options is critical for the performance. Default values are 

provided for the first-time use. 

Run: This option allows whether the Neural Network or the CLI approach will be chosen. 

In addition, a range/number of Ascans can be selected for processing, and whether 

averaging or sampling will be applied to the Ascans to speed up the process. 

4 



Training the Neural Network: Whether a Neural Network will succeed depends not only 

on the structure, but also on the training. Training has to be sufficient in order to cover 

the entire sample space, and it must involve a certain degree of redundancy. For this 

reason, the users are provided with a choice to train the Neural Network by themselves. 

They can either build the Neural Network from scratch, or use the existing weight 

matrices as a base line. In the current version, we can only input an artificial 

configuration and use that set to train the Neural Network. Training by incorporating the 

field collected Borehole data is our currently ongoing research. 

2.2 The Adaptive Transform Unit 

The Adaptive Transform unit serves as the pre-processing stage for both the Neural 

Network and CLI approaches. Its task is to determine the impulse response in an 

adaptive/recursive process. 

Let us consider the diagram given in Figure 2, where the input to the system is an Input 

Pulse produced by a particular antenna (transmitter). The system is the underground 

geophysical structure that affects and modifies the excitation pulse. The output is the 

Ascan that is recorded. If we assume the system to be linear and time invariant, we 

obtain the convolution A(t) =I (t) * h(t). Thus, by deconvolving I(t) from A(t), the 

impulse response of the system can be found. This is the basic idea of the Adaptive 

Transform. 

I(t) A(t) 

Figure 2. System representation of GPR signal processing. 

The generic approach of the Adaptive Transform is that it first locates the signal with 

maximum reflection, subtracts it from the Ascan, then locates the second one, subtracts it 

as well, and so on. As a result, a series of time-stamped (time-shifted) impulses will be 

found and used as the impulse response of the system. After some ordering and/or 
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justifying, those shifted impulses will be used as the input vector for the Neural Networks 

and the CLI subroutine. 

It should be noted that only attenuation and delay are considered, distortion and 

dispersion are not taken into account. 

2.3 The Neural Network Processing Unit 

The complete Neural Network approach has been pursued in parallel with the CLI 

investigations. The advances of the NN system have been reported in our previous 

annual report (1997 end of year report). The NN effort is still continuing and various 

input/output formatting has been slightly modified in order to be incorporated into a 

common user interface along with the CLI and AT approaches. A brief description of 

this Neural Network approach including some of its pros and cons are summarized 

below. 

There are two different Neural Networks in this unit, both use the back propagation 

algorithm. The first one, named NN I, is used for pattern recognition. It takes the 

rearranged impulse responses as input and categorizes it into one of the pre-defined 

geological patterns. Conventionally, we represent each reflected pulse by a pair of shifts 

and weights. The first half of the input vector consists of the weights in sequential time 

increments, the second half are the same weights but arranged according to magnitude 

such that larger weights go first. Each output node corresponds to one of the patterns, the 

maximum output is selected as the decision of NN I. 

The second Neural Network, named NN II, uses the decision of NN I together with the 

shifts to determine the depth profiles. Since different patterns have different numbers of 

layers, there are different weight matrices for different patterns. Each output node 

corresponds to one specific layer of that pattern, and its output, after appropriate scaling, 

identifies the depth of that layer. 
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2.4 The CLI Unit 

The analytical model currently under development within this approach makes the 

assumption that the input pulse is a plane wave. The underground structure is simplified 

into a one-dimensional stratified configuration. In this algorithm, the property (dielectric 

constant) of the first layer must be known as prior knowledge. This constraint is not 

viewed as significant since the top layer is the easiest layer to measure for its dielectric 

constant. 

The CLI algorithm works in a recursive way to investigate individual layers one after 

another, from top to bottom. The amplitudes of the reflected pulses are first used to 

determine the reflection coefficients at each interface. That, in conjunction with prior 

knowledge, can be used to decipher the dielectric constants for all the layers immediately. 

Furthermore, the shifts are translated into travel time of the pulse; hence the depths of 

each layer can be recovered. 

One of the difficulties encountered is that, due to proximity, an interface may have more 

than one reflection being recorded. As a result, the CLI algorithm has to keep track of 

the transmissions and reflections in order to distinguish and cancel the occurrence of 

multiple reflections caused by the same layer. Because of this, the accuracy of the CLI 

algorithm highly depends on the accuracy of the Adaptive Transform. 

2.5 The Neural Network Training Unit 

Training of the Neural Network is such an important issue that it needs to be discussed in 

detail. The training sources are discussed first, then the specific details regarding the 

actual implementation aspects are presented. 

There are two sources that can be used as training samples. The first source is a set of 

synthetic Ascans generated according to the profile provided by user. The second source 

is the information from the Borehole data and the corresponding radar lines. 

The first situation is well established and the training process has been developed and 

tested. It can provide a substantial degree of information to aid in choosing a particular 
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type and configuration of the Neural Network. This synthetic generation of the GPR 

Ascans has been tested extensively and reported in our '97 end of year report. We had 

developed a numerical model of the governing physics associated with the GPR. 

Following verification of the model the system was used to create a variety of situations 

that were representative of the physical sites in question. These synthetic GPR Ascans 

could then be used to train the Neural Network since our knowledge of the actual signal 

and subsurface were known explicitely. 

The second type of source uses the experimental data collected in the field. It is therefore 

more significant than the first type in a practical situation. However, a time-consuming 

amount of preliminary work is required for this actual training strategy. First, the 

correspondence of the radar line with the Boreholes has to be determined. Then relevant 

information has to be extracted from the Borehole data and mapped into one of several 

patterns. After that, the Ascans near the Borehole must be extracted from the radar line 

and pre-processed. Only then can the actually training begin. There is another difficulty 

using Borehole data for the training purpose. A large portion of Borehole records yields 

incomplete or skeptical information, which reduces the usefulness of the Borehole data. 

It is this latter constraint that we are addressing currently. Most of the other restrictions 

have been resolved successfully. 

Like the processing unit, the actual training also has two parts. The first part is the 

training of NN I, which is somewhat straightforward. The second part is the training of 

NN II. In this part, different settings of the Neural Network have to be used for different 

patterns. In order to ensure optimum performance, the training targets (depths) have to 

be scaled according to the bounds. 

3. CURRENT AND FUTURE WORK 
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3.1 Current Work 

3.1.1 Training with Borehole Data 

The most recent research has been attributed to the training with the second type of 

sources (see 2.5 for detail). Currently, two patterns have been selected and equipped with 

corresponding Ascans for the training purpose. Appendix A provides details about these 

two patterns. Specific information regarding the training sample sources, the table below 

summarizes all relevant parameters. 

Borehole ID Radar Line Pattern# Metermark Selected Ascans 

AP-6209 CR93-ll 1 120 #1100-#1299 

AP-6211 CR93-11 1 270 #2600-#2799 

AP-6228 CR93-27 2 440 #2100-#2299 

AP-6492 CR93-27 2 700 #3400-#3599 

Table 1. Samples used in Training with Borehole data 

Several issues are being carefully considered when conducting this mode of training. The 

first issue is space consistency between borehole data and radar lines. Each borehole 

record comes with a 'metermark', and in the header of each radar line file information 

about the space resolution (scans/meter) of the Ascans is found. Those two pieces of 

information can be employed to select the Ascans. However, the problem is that 

sometimes the radar line appears incomplete. For example, borehole records associated 

with CR93-ll have metermarks up to 1400m, which corresponds to Ascan #14000. 

Unfortunately the total number of Ascans in the file is only 8905. These type of 

inconsistencies could have serious effect on the training. We are retrieving original 

records to resolve such inconsistencies. 
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The second issue is the travel time consistency. All the borehole data and radar lines are 

collected in Alaska, some were acquired in the summer and autumn, some were gathered 

in winter and spring. Given that the borehole data and the associated radar lines were 

collected in different seasons, then the actual subsurface layer configuration and depth 

profiles could possibly exhibit significant differences. 

Besides the two issues raised above, there is one additional problem that has to be solved. 

Past data processing work is based on a 7-pattern configuration as summarized in our '97 

end of year report. However, not all the 7 patterns can be found in the borehole data, and 

some borehole data do not belong to any of the initial 7 patterns. Another set of patterns 

should be derived, which may not be fully compatible with the current set. 

3.1.2 Different Approaches oflmplementing the Neural Network Scheme 

Currently there are three strategies of implementing the Neural Network approach. Each 

methodology has trade-off considerations. We are advancing all3 modes from a research 

perspective. However, which method will yield the greatest return in the field has not 

been determined as yet. 

First of all, a complete set of weight matrices was generated that can be loaded and used 

immediately. However, the codes used for training the Neural Networks require a 

significant amount of time to converge to a stable set of weights. 

The second way is to use the synthetic data to retrain the Neural Network. Some 

modifications of the Neural Network code are also possible. The codes responsible for 

training had been already developed and integrated into the system. However, this 

method is of relevance for functionality testing only. 

The third way is to use the borehole data to retrain the Neural Network. The advantages 

and dis ad vantages are outlined in 3 .1.1. 
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3.2 Future Improvement 

3.2.1 More Robust Adaptive Transform 

The current implementation of the Adaptive Transform is memoryless. In other words, 

results from processing the previous Ascans do not affect the processing of the present 

Ascan. Consequently, the results of two adjacent Ascans could be dramatically different, 

although they may only be O.lm or 0.2m apart. 

One way to remedy this is problem is by using the results from the previous Ascans to 

gain some knowledge about the current Ascan. Adjustment could be made if necessary. 

Thus, the processing result will appear more continuous and the algorithm can be better 

immunized to noise. This history record development is being pursued. 

3.2.2 Advance architectures in Neural Network 

Thus far, only the Back Propagation (BP) type of Neural Network is used. BP Network 

is not the optimum choice for certain applications. There is a need to try other types of 

Neural Networks and compare their performance with the BP Network in our application. 

3.2.3 New Approach Using the Inverse Formulation 

As shown previously in this report, the identification performance highly depends on the 

Adaptive Transform, irrespective of the approach chosen. There is a need to try 

alternatives. 

Under this scenario, an analytical inverse formulation has been studied. This method 

does not use the Adaptive Transform for pre-processing. And it does not rely on the 

simple model that was used in the CLI approach, (which is also used implicitly in the 

Neural Network approach). It is based on a more generalized model, and key operations 

are matrix operations. There are still more aspects to be explored, i.e., speed, noise 

tolerance, etc. But judging by the knowledge obtained so far, it would be a good 

candidate for our application. 
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Appendix A: Pattern configuration for Borehole data 

General information: Pattern configuration 

Note: Items in parenthesis may or may not be present 

Ground Surface 

(Frozen) 
-------------- ---------

Unfrozen ------------- (FREE_GW) 

----------------------------- (INPF) 

Frozen 
------------- (OlJfPF) 

(Unfrozen) 
------------- (BEDROCK) 

From Ftww_c-l.xls From Transe-l.xls 

Figure A.l General pattern configuration 
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Example: Pattern 1 

Borehole AP-6209, correspond to CR93-11 metermark 120, all depths are in ft. 

Note: The difference between the two data records is caused by the fact that they were 

collected in different seasons. 

Frozen 

Ground Surface 

Elevation 442.2ft 
1.0 -------------

Unfrozen ------------------------ 5.5 FREE_ OW 

8.5 -------------- -------------- 8 INPF 

Frozen 

----------------------------------------

74 ------------------------- -------------- 74 BEDROCK 

From Ftww _c-l.xls From Transe-l.xls 

Figure A.2 Pattern configuration example 1 

Dry sand Saturated sand Permafrost Bedrock 

0-5.5 ft 5.5- 8ft 8-74ft 74-ft 

TableA.1 Parameters for pattern configuration example 1 
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Example: Pattern 2 

Borehole AP-6492, correspond to CR93-27 metermark 700, all depths are in ft. 

7.5 

81 

------------------------

Unfrozen ------------------------

Ground Surface 

Elevation 442.Ift 

------------------------------ 8 INPF 

Frozen 

---------------------------------------

------------------------ 77 BEDROCK 

From Ftww_c-l.xls From Transe-1.xls 

Figure A.3 Pattern configuration example 2 

Dry sand Permafrost Bedrock 

0-8 ft 8-77ft 77-ft 

TableA.2 Parameters for pattern configuration example 2 
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Appendix B: User interface and system functionality 
This appendix provides a brief introduction of the user interface and system functionality. 

B.l Overview 

This program uses the Microsoft Foundation Class (MFC) to provide a user environment 

that is compatible with most Windows 95/98 applications. The main window is shown in 

Figure B.l. As usual, the software user can either invoke the menu or the tool bar to call 

the functions provided. 

Figure B.l. Main window of the GPR data processing system 

According to the nature of this system, several operations are of special interest. Those 

include, File Open, Options, Processing the data, and Training the Neural Network. 

Before going into a detailed discussion, it will be helpful to first understand how the 

system works. 
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1) To process GPR data, the first step is the selecting and opening of a GPR data file, 

i.e. the .dzt files. Since the processing highly depends on the Ground Penetrating 

Radar configurations at the time the data was collected, the data file header is 

shown right after the user open a file. The parameters specified in the header can 

be changed if necessary. 

2) After a data file is opened, the user should check the options, i.e. the parameters 

of the Initial Pulse, which is crucial to the overall system performance. The user 

can either choose a pre-defined initial pulse or import a user-defined pulse from a 

separate file. However, it is advised that the default initial pulse be used at first. 

3) The system is now ready to process the data file. Both the Neural Network 

approach and the Consecutive Layer Identification (CLI) approach are 

implemented. Thus the user can choose either one or both to process the data. 

Moreover, the operator can also specify other parameters that are relevant to the 

processing, e.g. the range of Ascans to be evaluated. The result of the CLI 

approach will be shown on the screen. 

B.2 Opening a file 

When the menu item _tilejOpen is selected, or the Open button on the toolbar is clicked, a 

dialog box will appear and prompt the user to select and open a file, as shown below. 

Figure B.2. The File Open dialog box 

16 



As discussed before, the information contained in the file header is shown to the user and 

can be changed if necessary. This is done via the dialog box shown in Figure B.3. 

Figure B.3. GPR data file header information 

By default, the user cannot change those parameters. Should it become necessary to 

change the parameters and one clicks on "Re-define the parameters", a warning message 

will be shown to alert the operator and to require further confirmation, as shown in Figure 

B.4. 

Figure B.4. Warning message for changing the radar line parameters. 
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B.3 Specifying Options for Initial Pulse 

The options presented here allow the specification of an initial pulse that will be used by 

the Adaptive Transform to decompose the Ascans. Since both the Neural Network and 

the CLI approach will use the result of the Adaptive Transform, these parameters are 

crucial for a good identification performance. However, there is no direct way to 

determine the initial pulse from the data file itself. Therefore, the user has to select an 

appropriate initial pulse. This can be done in one of two ways. The first one is to choose 

a few parameters for two kinds of pre-defined pulses, as shown below. The second way 

is to generate the pulse by other means and import it as a file. 

Figure B.S. Options for Initial Pulse. 

A number of radar lines had been studied in detail in the previous research. As a result, 

there are default (suggested) parameters for those radar lines. The user is advised to use 

the default choices. 
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B.4 Processing the data 

There are four options available to process the data, the user can choose either the Neural 

Network or the CLI approach to process the data, or use both approaches to process at the 

same time, either with or without collaboration. The first three options have been 

implemented, and the last one will be implemented in the near future. The result of the 

CLI approach will be displayed real time on the screen, while the result of the Neural 

Network approach will be saved to a file. Below is the dialog box used to specify 

different parameters. 

Figure B.6. Options used for processing the data 
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The total number of Ascans in the current radar line is given for the user's convenience. 

The user can specify a range of Ascans to be processed, of course that should not exceed 

the total number. Several fast-processing options are also provided for experimental 

purpose. The user can choose to process every single Ascan, one out of every 10 Ascans, 

or the average of 20 Ascans. For an entire new radar line, some general ideas would be 

helpful for choosing the various options mentioned in the previous sections. And that can 

be achieved by using these fast-processing options. The user can keep trying until an 

optimum set of parameters is found. Below is a screen shot of the result obtained by the 

CLI approach, processing one out of every 10 Ascans for a total of 120 Ascans. 

Figure B. 7. Result of the CLI approach 

B.5 Training the Neural Network 

As discussed before, the Neural Network approach consists of two parts: one used to 

determine the pattern, and the second used to recover the depths. To train the neural 

networks, the user has to provide both the pattern number and the depth profile. As 

shown in Figure B.S, the user can choose from one of the six possible patterns, the 
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material property is shown for reference, and the user can specify the minimum and 

maximum thickness of each layer. The program will randomly generate 500 samples 

within the range given by the user and uses those samples to train the Neural Network. 

Currently, another training scheme has been developed and is being incorporated into this 

framework. This new training scheme uses the field-collected borehole data together 

with the corresponding Ascans as the training samples. For this scheme, it is important to 

choose an appropriate initial pulse before the actual training takes place. 

Figure B.S. Neural Network training configuration 
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Since the training process usually takes a certain period of time, a progress bar is shown 

to indicate the current progress of the training, as shown in Figure B.9. 

Figure B.9. Message during training 
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